5081 independent reflections

 $R_{\rm int} = 0.106$

3995 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-12a,11b-Diphenyl-1,2,3,4,5,11-hexahydro-2,3,4a,5a,10a,11a-hexaazabenz[f]indeno[2,1,8-ija]naphth[2,3-f]azulene-1,4,10-trione chloroform solvate

Sheng-Li Hu,*‡ Jian-Min Zhang, Gang Yan and Shuai Wang

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: hushengli168@126.com

Received 15 May 2007; accepted 23 August 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.056; wR factor = 0.171; data-toparameter ratio = 13.8.

The title compound, C₂₅H₂₀N₆O₃·CHCl₃, a rigid glycoluril derivative, is an intermediate for the synthesis of molecular tweezers. The crystal structure is stabilized by intermolecular C-H···O and N-H···O hydrogen bonds. The chloroform solvent molecule is disordered over two positions; the site occupancy factors are ca 0.89 and 0.11.

Related literature

For related literature, see: Hof et al. (2002); Hu et al. (2007); Lagona et al. (2003); Li et al. (2006); Rebek (2005); Rowan et al. (1999); Wu et al. (2002); Yin et al. (2006).

Experimental

Crystal data C25H20N6O3.CHCl3 $M_r = 571.84$ Monoclinic, $P2_1/n$ a = 17.3315 (12) Å b = 8.4507 (6) Å c = 17.7874 (12) Å $\beta = 94.6520 \ (10)^{\circ}$

V = 2596.6 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.40 \text{ mm}^-$ T = 292 (2) K $0.40 \times 0.30 \times 0.30 \; \text{mm}$

‡ Also at Hubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China

Bruker SMART CCD area-detector diffractometer Absorption correction: none 26236 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.171$	independent and constrained
S = 1.12	refinement
5081 reflections	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
368 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$
18 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5A\cdotsO1^{i}$	0.857 (10)	2.42 (2)	3.004 (2)	126 (2)
$N5-H5A\cdots O2^{i}$	0.857 (10)	2.11 (2)	2.782 (2)	135 (2)
N6−H6···O2 ⁱ	0.868 (10)	2.44 (2)	3.062 (2)	130 (2)
N6−H6···O1 ⁱⁱ	0.868 (10)	2.298 (17)	3.041 (2)	144 (2)
$C8 - H8A \cdots O1$	0.97	2.57	2.938 (3)	103
C14−H14· · ·N3	0.93	2.51	2.832 (3)	101
C18−H18· · ·N4	0.93	2.51	2.827 (3)	100
C21-H21···N5	0.93	2.48	2.821 (3)	102
$C26-H26A\cdotsO1^{i}$	0.98 (4)	2.43 (4)	3.364 (3)	158 (3)
$C9-H9B\cdots O3^{iii}$	0.97	2.23	3.165 (2)	161

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) -x, -y + 2, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University for financial support and Professer An-Xin Wu for helpful discussion.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2109).

References

- Bruker (2001). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr (2002). Chem. Commun. pp. 2228-2229
- Hu, S., She, N., Yin, G., Guo, H., Wu, A. & Yang, C. (2007). Tetrahedron Lett. 48, 1591-1594.
- Lagona, J., Fettinger, J. C. & Isaacs, L. (2003). Org. Lett. 5, 3745-3747.
- Li, Y., Yin, G., Guo, H., Zhou, B., Guo, H., Zhou, B. & Wu, A. (2006). Synthesis, pp. 2897-2902.
- Rebek, J. Jr (2005). Angew. Chem. Int. Ed. 44, 2068-2078.
- Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. **32**, 995–1006.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Wu, A., Chakrraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817-5830.

Yin, G., Wang, Z., Chen, Y., Wu, A. & Pan, Y. (2006). Synlett, pp. 49-52.

Acta Cryst. (2007). E63, o3909 [doi:10.1107/S1600536807041591]

rac-12a,11b-Diphenyl-1,2,3,4,5,11-hexahydro-2,3,4a,5a,10a,11a-hexaazabenz[*f*]indeno[2,1,8-*ija*]naphth[2,3-*f*]azulene-1,4,10-trione chloroform solvate

S.-L. Hu, J.-M. Zhang, G. Yan and S. Wang

Comment

The glycoluryl skeleton has served as an important building blocks for preparations of supramolecular systems including molecular clips (Rowan *et al.*, 1999; Yin *et al.*, 2006; Li *et al.*, 2006; Hu *et al.*, 2007), molecular capsules (Hof *et al.*, 2002; Rebek 2005) and the cucurbit[*n*]uryl family (Lagona *et al.*, 2003). Many methylene-bridged glycoluryl dimers have been synthesized by dimerization reaction of glycoluryl derivatives (Wu *et al.*, 2002). In this paper we report the crystal structure of the title compound (I).

The chirality of the molecule is induced by the inverted nitrogen atoms generating two chiral carbon atoms of the same absolute configuration (C12 and C19). The space group is centrosymmetric and the crystalline compound is a racemate. In the crystal structure of (I) (Fig. 1) the interplanar angle between the two five-membered rings C11/N4/C12/C19/N5 and C10/N3/C12/C19/N5 is 69.5 (1)° whereas the angle between the planes of the two benzene rings C13/C14/C15/C16/C17/C18 and C20/C21/C22/C23/C24/C25 is 66.4 (2) °. The aromatic ring (C1/C2/C3/C4/C5/C6) is coplanar with the five-membered (C1/C6/C7/N1/N2) ring. The molecules are connected by intermolecular C—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

The title compound was synthesized in analogy to the literature procedure of Lagona *et al.* (2003), Crystals appropriate for data collection were obtained by slow evaporation from a methanol-chloroform solution (1:20 V/V) of (I).

Refinement

The H atoms were constrained to an ideal geometry and constrained to ride on their parent atoms as follows: methylene H with d(C-H)=0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; methine H with d(C-H)=0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$; aromatic H with d(C-H)=0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The solvent molecule chloroform is disorder over two sites; the site-occupancy factors for the two orientations were refined by *DFIX*, giving 0.891 (4) and 0.109 (4) for the major and minor components, respectively.

Figures

Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms atoms shown as circles of arbitrary radii. Higher populated orientation of disordered solvate molecule is shown.

Fig. 2. The molecular packing of (I) viewed along the b axis.

rac-12*a*,11*b*-Diphenyl-1,2,3,4,5,11-hexahydro-2,3,4a,5a,10*a*,11*a*-hexaazabenz[*f*]\ indeno[2,1,8-ija]naphth[2,3-*f*]azulene-1,4,10-trione chloroform solvate

Crystal data	
C25H20N6O3.CHCl3	$F_{000} = 1176$
$M_r = 571.84$	$D_{\rm x} = 1.463 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9009 reflections
<i>a</i> = 17.3315 (12) Å	$\theta = 2.3 - 26.2^{\circ}$
b = 8.4507 (6) Å	$\mu = 0.40 \text{ mm}^{-1}$
c = 17.7874 (12) Å	T = 292 (2) K
$\beta = 94.6520 \ (10)^{\circ}$	Block, colourless
$V = 2596.6 (3) \text{ Å}^3$	$0.40\times0.30\times0.30~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	3995 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.106$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 292(2) K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -21 \rightarrow 21$
Absorption correction: none	$k = -10 \rightarrow 10$
26236 measured reflections	$l = -21 \rightarrow 21$
5081 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.171$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1P)^{2} + 0.1644P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
5081 reflections	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$

368 parameters

 $\Delta \rho_{min} = -0.45 \text{ e } \text{\AA}^{-3}$

18 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	-0.01228 (12)	0.6113 (2)	0.09136 (11)	0.0406 (5)	
C2	-0.08340 (13)	0.6849 (3)	0.07437 (13)	0.0512 (6)	
H2	-0.0897	0.7649	0.0385	0.061*	
C3	-0.14406 (14)	0.6327 (3)	0.11352 (14)	0.0579 (6)	
Н3	-0.1925	0.6790	0.1037	0.070*	
C4	-0.13512 (15)	0.5126 (3)	0.16741 (14)	0.0614 (7)	
H4	-0.1777	0.4796	0.1919	0.074*	
C5	-0.06507 (15)	0.4427 (3)	0.18466 (13)	0.0548 (6)	
Н5	-0.0592	0.3637	0.2211	0.066*	
C6	-0.00201 (13)	0.4933 (2)	0.14600 (11)	0.0416 (5)	
C7	0.07793 (12)	0.4425 (2)	0.15020 (11)	0.0401 (5)	
C8	0.19109 (11)	0.5352 (2)	0.08132 (11)	0.0364 (4)	
H8A	0.2180	0.4513	0.1099	0.044*	
H8B	0.1949	0.5134	0.0282	0.044*	
C9	0.07849 (11)	0.7535 (2)	0.00801 (11)	0.0366 (4)	
H9A	0.0997	0.7030	-0.0348	0.044*	
H9B	0.0327	0.8116	-0.0108	0.044*	
C10	0.24996 (12)	0.7221 (2)	0.17428 (11)	0.0383 (4)	
C11	0.11468 (11)	0.9955 (2)	0.08124 (10)	0.0358 (4)	
C12	0.21600 (10)	0.8227 (2)	0.05273 (10)	0.0313 (4)	
C13	0.25256 (11)	0.8065 (2)	-0.02170 (10)	0.0365 (4)	
C14	0.31630 (13)	0.7111 (3)	-0.02762 (13)	0.0485 (5)	
H14	0.3367	0.6539	0.0140	0.058*	
C15	0.35027 (16)	0.7001 (3)	-0.09556 (16)	0.0656 (7)	
H15	0.3932	0.6354	-0.0990	0.079*	
C16	0.32150 (18)	0.7826 (4)	-0.15692 (15)	0.0730 (8)	
H16	0.3443	0.7735	-0.2023	0.088*	
C17	0.25842 (18)	0.8798 (4)	-0.15183 (15)	0.0716 (8)	
H17	0.2390	0.9378	-0.1936	0.086*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C18	0.22375 (14)	0.8913 (3)	-0.08427 (12)	0.0513 (6)	
H18	0.1809	0.9565	-0.0811	0.062*	
C19	0.24895 (11)	0.9617 (2)	0.10817 (10)	0.0337 (4)	
C20	0.31752 (12)	1.0523 (2)	0.08231 (12)	0.0405 (5)	
C21	0.39225 (14)	1.0119 (3)	0.10742 (17)	0.0604 (6)	
H21	0.4010	0.9328	0.1435	0.073*	
C22	0.45422 (17)	1.0884 (4)	0.0792 (2)	0.0852 (10)	
H22	0.5045	1.0594	0.0958	0.102*	
C23	0.4419 (2)	1.2067 (5)	0.0271 (2)	0.0919 (11)	
H23	0.4838	1.2583	0.0085	0.110*	
C24	0.3686 (2)	1.2488 (4)	0.00243 (19)	0.0841 (10)	
H24	0.3605	1.3292	-0.0330	0.101*	
C25	0.30584 (16)	1.1725 (3)	0.02971 (15)	0.0579 (6)	
H25	0.2558	1.2022	0.0127	0.069*	
C26	0.46631 (16)	0.5204 (3)	0.23715 (15)	0.0657 (7)	
H26A	0.443 (2)	0.596 (4)	0.270 (2)	0.079*	0.89
H26B	0.4541 (8)	0.5929 (15)	0.2749 (7)	0.079*	0.11
C11	0.41377 (9)	0.34312 (14)	0.23910 (8)	0.1022 (6)	0.891 (4)
C12	0.56162 (7)	0.4907 (3)	0.27090 (7)	0.1030 (6)	0.891 (4)
C13	0.46003 (13)	0.59902 (19)	0.14665 (6)	0.1049 (6)	0.891 (4)
C11'	0.3909 (5)	0.4067 (16)	0.2006 (8)	0.128 (5)*	0.109 (4)
C12'	0.5452 (5)	0.4011 (15)	0.2668 (6)	0.099 (4)*	0.109 (4)
C13'	0.5003 (8)	0.6358 (12)	0.1606 (6)	0.106 (4)*	0.109 (4)
N1	0.11038 (9)	0.53202 (19)	0.09645 (9)	0.0394 (4)	
N2	0.05607 (9)	0.6324 (2)	0.05924 (11)	0.0449 (4)	
N3	0.22939 (9)	0.68300 (17)	0.09983 (8)	0.0336 (4)	
N4	0.13463 (9)	0.86380 (18)	0.04135 (9)	0.0346 (4)	
N5	0.26771 (11)	0.8756 (2)	0.17713 (9)	0.0426 (4)	
N6	0.18148 (10)	1.0629 (2)	0.11157 (10)	0.0401 (4)	
01	0.11387 (9)	0.34349 (17)	0.19079 (9)	0.0515 (4)	
O2	0.25289 (11)	0.62845 (19)	0.22639 (8)	0.0567 (5)	
O3	0.04941 (8)	1.04336 (18)	0.08530 (8)	0.0476 (4)	
Н6	0.1812 (15)	1.133 (2)	0.1474 (11)	0.057*	
H5A	0.2804 (14)	0.920 (3)	0.2196 (9)	0.057*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0391 (11)	0.0430 (11)	0.0388 (11)	-0.0064 (8)	-0.0024 (8)	-0.0056 (8)
C2	0.0422 (12)	0.0570 (14)	0.0530 (13)	-0.0005 (10)	-0.0038 (10)	0.0019 (10)
C3	0.0409 (12)	0.0740 (16)	0.0588 (15)	0.0014 (11)	0.0031 (11)	-0.0066 (12)
C4	0.0514 (14)	0.0790 (18)	0.0560 (15)	-0.0111 (13)	0.0173 (11)	-0.0100 (13)
C5	0.0602 (15)	0.0600 (14)	0.0449 (13)	-0.0103 (11)	0.0082 (10)	0.0001 (10)
C6	0.0469 (12)	0.0424 (11)	0.0348 (10)	-0.0067 (9)	-0.0001 (8)	-0.0049 (8)
C7	0.0466 (11)	0.0359 (10)	0.0364 (10)	-0.0057 (8)	-0.0051 (8)	-0.0004 (8)
C8	0.0376 (10)	0.0318 (10)	0.0388 (10)	0.0017 (8)	-0.0033 (8)	-0.0017 (8)
C9	0.0349 (10)	0.0434 (11)	0.0305 (9)	0.0003 (8)	-0.0046 (7)	0.0028 (8)
C10	0.0414 (11)	0.0392 (10)	0.0331 (10)	-0.0020 (8)	-0.0045 (8)	0.0019 (8)

C11	0.0399 (11)	0.0390 (10)	0.0285 (9)	0.0033 (8)	0.0025 (7)	0.0036 (7)
C12	0.0323 (9)	0.0320 (9)	0.0290 (9)	0.0006 (7)	-0.0016 (7)	-0.0005 (7)
C13	0.0375 (10)	0.0398 (10)	0.0323 (10)	-0.0046 (8)	0.0024 (8)	-0.0029 (8)
C14	0.0437 (12)	0.0572 (13)	0.0449 (12)	0.0042 (10)	0.0066 (9)	-0.0007 (10)
C15	0.0526 (15)	0.0804 (18)	0.0671 (17)	0.0074 (13)	0.0247 (12)	-0.0071 (14)
C16	0.0769 (19)	0.098 (2)	0.0480 (15)	0.0016 (17)	0.0300 (13)	0.0021 (14)
C17	0.0815 (19)	0.095 (2)	0.0406 (13)	0.0067 (16)	0.0161 (13)	0.0168 (13)
C18	0.0557 (13)	0.0604 (14)	0.0383 (12)	0.0059 (11)	0.0074 (10)	0.0079 (10)
C19	0.0362 (10)	0.0333 (9)	0.0307 (9)	0.0010 (7)	-0.0020(7)	-0.0008 (7)
C20	0.0407 (11)	0.0360 (10)	0.0449 (11)	-0.0052 (8)	0.0047 (9)	-0.0064 (8)
C21	0.0445 (13)	0.0547 (14)	0.0811 (18)	-0.0027 (10)	-0.0009 (12)	-0.0069 (12)
C22	0.0457 (15)	0.092 (2)	0.120 (3)	-0.0150 (15)	0.0184 (16)	-0.028 (2)
C23	0.077 (2)	0.098 (2)	0.106 (3)	-0.040 (2)	0.039 (2)	-0.019 (2)
C24	0.108 (3)	0.0687 (19)	0.079 (2)	-0.0324 (18)	0.0289 (18)	0.0080 (15)
C25	0.0628 (15)	0.0493 (13)	0.0619 (15)	-0.0099 (11)	0.0066 (12)	0.0081 (11)
C26	0.0740 (17)	0.0701 (17)	0.0544 (15)	0.0191 (14)	0.0131 (12)	-0.0052 (13)
Cl1	0.1324 (10)	0.0798 (7)	0.0974 (9)	-0.0179 (6)	0.0280 (7)	-0.0191 (6)
Cl2	0.0727 (7)	0.1422 (15)	0.0931 (8)	0.0284 (7)	0.0004 (5)	-0.0072 (7)
C13	0.1443 (14)	0.1069 (9)	0.0636 (6)	0.0391 (9)	0.0090 (7)	0.0229 (5)
N1	0.0385 (9)	0.0366 (9)	0.0418 (9)	-0.0007 (7)	-0.0050 (7)	0.0047 (7)
N2	0.0320 (9)	0.0491 (10)	0.0530 (11)	-0.0022 (7)	-0.0008 (7)	0.0133 (8)
N3	0.0391 (9)	0.0307 (8)	0.0300 (8)	0.0003 (6)	-0.0040 (6)	0.0006 (6)
N4	0.0322 (8)	0.0381 (8)	0.0328 (8)	0.0025 (6)	-0.0025 (6)	-0.0021 (6)
N5	0.0582 (11)	0.0375 (9)	0.0298 (9)	-0.0048 (8)	-0.0097 (8)	-0.0003 (7)
N6	0.0420 (9)	0.0373 (9)	0.0410 (9)	0.0036 (7)	0.0022 (7)	-0.0093 (7)
01	0.0560 (10)	0.0462 (8)	0.0508 (9)	-0.0017 (7)	-0.0054 (7)	0.0123 (7)
O2	0.0823 (12)	0.0475 (9)	0.0372 (8)	-0.0149 (8)	-0.0140 (8)	0.0126 (7)
03	0.0375 (8)	0.0588 (9)	0.0463 (8)	0.0139 (7)	0.0022 (6)	-0.0015 (7)

Geometric parameters (Å, °)

C1—N2	1.368 (3)	C14—C15	1.390 (3)
C1—C2	1.392 (3)	C14—H14	0.9300
C1—C6	1.394 (3)	C15—C16	1.355 (4)
C2—C3	1.380 (3)	C15—H15	0.9300
С2—Н2	0.9300	C16—C17	1.376 (4)
C3—C4	1.396 (4)	С16—Н16	0.9300
С3—Н3	0.9300	C17—C18	1.390 (3)
C4—C5	1.362 (4)	С17—Н17	0.9300
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1.404 (3)	C19—N5	1.440 (2)
С5—Н5	0.9300	C19—N6	1.454 (2)
C6—C7	1.446 (3)	C19—C20	1.516 (3)
C7—O1	1.240 (2)	C20—C21	1.378 (3)
C7—N1	1.375 (3)	C20—C25	1.385 (3)
C8—N3	1.440 (2)	C21—C22	1.382 (4)
C8—N1	1.446 (3)	C21—H21	0.9300
C8—H8A	0.9700	C22—C23	1.369 (5)
C8—H8B	0.9700	С22—Н22	0.9300

C9—N4	1.440 (2)	C23—C24	1.357 (5)
C9—N2	1.444 (2)	С23—Н23	0.9300
С9—Н9А	0.9700	C24—C25	1.386 (4)
С9—Н9В	0.9700	C24—H24	0.9300
C10—O2	1.217 (2)	C25—H25	0.9300
C10—N5	1.333 (3)	C26—C11'	1.707 (7)
C10—N3	1.383 (2)	C26—Cl2	1.730 (3)
C11—O3	1.209 (2)	C26—Cl3	1.737 (3)
C11—N6	1.362 (3)	C26—Cl2'	1.746 (6)
C11—N4	1.379 (2)	C26—Cl1	1.755 (3)
C12—N4	1.450 (2)	C26—Cl3'	1.811 (7)
C12—N3	1.456 (2)	C26—H26A	0.98 (4)
C12—C13	1.520 (3)	C26—H26B	0.945 (8)
C12—C19	1.608 (2)	N1—N2	1.394 (2)
C13—C14	1.378 (3)	N5—H5A	0.857 (10)
C13—C18	1.382 (3)	N6—H6	0.868 (10)
N2—C1—C2	129.3 (2)	N6—C19—C12	102.02 (14)
N2—C1—C6	108.56 (18)	C20—C19—C12	115.52 (15)
C2—C1—C6	122.1 (2)	C21—C20—C25	118.9 (2)
C3—C2—C1	116.5 (2)	C21—C20—C19	121.0 (2)
С3—С2—Н2	121.8	C25—C20—C19	120.0 (2)
C1—C2—H2	121.8	C20—C21—C22	120.2 (3)
C2—C3—C4	122.2 (2)	C20—C21—H21	119.9
С2—С3—Н3	118.9	C22—C21—H21	119.9
С4—С3—Н3	118.9	C23—C22—C21	120.3 (3)
C5—C4—C3	121.1 (2)	С23—С22—Н22	119.8
С5—С4—Н4	119.4	C21—C22—H22	119.8
C3—C4—H4	119.4	C24—C23—C22	120.0 (3)
C4—C5—C6	118.2 (2)	С24—С23—Н23	120.0
С4—С5—Н5	120.9	С22—С23—Н23	120.0
С6—С5—Н5	120.9	C23—C24—C25	120.4 (3)
C1—C6—C5	119.9 (2)	C23—C24—H24	119.8
C1—C6—C7	108.41 (18)	C25—C24—H24	119.8
C5—C6—C7	131.7 (2)	C20—C25—C24	120.1 (3)
O1—C7—N1	124.20 (19)	С20—С25—Н25	120.0
O1—C7—C6	131.6 (2)	С24—С25—Н25	120.0
N1—C7—C6	104.19 (16)	Cl1'-C26-Cl2	136.9 (5)
N3—C8—N1	114.13 (16)	Cl1'-C26-Cl3	82.8 (5)
N3—C8—H8A	108.7	Cl2—C26—Cl3	111.31 (17)
N1—C8—H8A	108.7	Cl1'—C26—Cl2'	110.3 (5)
N3—C8—H8B	108.7	Cl2—C26—Cl2'	26.9 (4)
N1—C8—H8B	108.7	Cl3—C26—Cl2'	119.3 (4)
H8A—C8—H8B	107.6	Cl1'—C26—Cl1	31.2 (5)
N4—C9—N2	113.96 (15)	Cl2—C26—Cl1	110.59 (16)
N4—C9—H9A	108.8	Cl3—C26—Cl1	110.56 (17)
N2—C9—H9A	108.8	Cl2'—C26—Cl1	84.0 (4)
N4—C9—H9B	108.8	Cl1'—C26—Cl3'	107.6 (5)
N2—C9—H9B	108.8	Cl2—C26—Cl3'	88.8 (4)
Н9А—С9—Н9В	107.7	Cl3—C26—Cl3'	25.5 (4)

02-C10-N5	127 50 (18)	C12'—C26—C13'	104 1 (4)
02 - C10 - N3	124.42 (19)	Cl1—C26—Cl3'	132.5 (5)
N5-C10-N3	108.05 (16)	Cll'—C26—H26A	105 (2)
03—C11—N6	127.32 (18)	Cl2—C26—H26A	108 (2)
03—C11—N4	125.12 (18)	Cl3—C26—H26A	108 (2)
N6—C11—N4	107.51 (17)	Cl2'—C26—H26A	123 (2)
N4—C12—N3	112.47 (15)	Cl1—C26—H26A	108 (2)
N4-C12-C13	111.68 (14)	Cl3'—C26—H26A	106 (2)
N3—C12—C13	111.72 (15)	Cl1'—C26—H26B	115.3 (8)
N4—C12—C19	101.76 (13)	Cl2—C26—H26B	96.3 (9)
N3—C12—C19	101.96 (13)	Cl3—C26—H26B	114.2 (9)
C13—C12—C19	116.60 (15)	Cl2'—C26—H26B	112.0 (8)
C14—C13—C18	118.75 (19)	Cl1—C26—H26B	113.1 (9)
C14—C13—C12	120.85 (18)	Cl3'—C26—H26B	106.9 (8)
C18—C13—C12	120.38 (18)	H26A—C26—H26B	12 (2)
C13—C14—C15	120.3 (2)	C7—N1—N2	111.51 (16)
C13—C14—H14	119.9	C7—N1—C8	126 60 (16)
C15-C14-H14	119.9	N2—N1—C8	121.76 (16)
C16-C15-C14	120.8 (2)	C1 - N2 - N1	107 27 (16)
C16—C15—H15	119.6	C1—N2—C9	129.95 (17)
C14—C15—H15	119.6	N1—N2—C9	121.67 (15)
C15-C16-C17	119.8 (2)	C10-N3-C8	120 30 (16)
C15—C16—H16	120.1	C10 - N3 - C12	111.95 (15)
C17—C16—H16	120.1	C8—N3—C12	121.53 (14)
C16—C17—C18	120.0 (2)	C11—N4—C9	123.04 (16)
С16—С17—Н17	120.0	C11—N4—C12	113.75 (15)
C18—C17—H17	120.0	C9—N4—C12	121.30 (15)
C13—C18—C17	120.4 (2)	C10—N5—C19	115.06 (16)
C13—C18—H18	119.8	C10—N5—H5A	120.2 (18)
C17—C18—H18	119.8	C19—N5—H5A	123.6 (18)
N5-C19-N6	112.86 (16)	C11—N6—C19	113.47 (16)
N5-C19-C20	112.66 (16)	C11—N6—H6	121.3 (17)
N6—C19—C20	111.60 (16)	C19—N6—H6	118.8 (18)
N5-C19-C12	101.41 (14)		
$N^{2}-C^{1}-C^{2}-C^{3}$	176.2 (2)	C^{23} C^{24} C^{25} C^{20}	-0.2(5)
$C_{6} = C_{1} = C_{2} = C_{3}$	-1.2(3)	01 - C7 - N1 - N2	179.60(18)
C1 - C2 - C3 - C4	0.0(4)	C6-C7-N1-N2	-0.6(2)
$C_2 = C_3 = C_4 = C_5$	11(4)	01 - C7 - N1 - C8	-45(3)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	-0.9(4)	C6-C7-N1-C8	175 28 (17)
N_{2} C_{1} C_{6} C_{5}	-17652(19)	N_{3} C_{8} N_{1} C_{7}	-1126(2)
$C_2 - C_1 - C_6 - C_5$	14(3)	N3-C8-N1-N2	62.9(2)
$N_{-C1-C6-C7}$	24(2)	C_{2} C_{1} N_{2} N_{1}	179.6(2)
C_{2} C_{1} C_{6} C_{7}	-179.69(19)	C6-C1-N2-N1	-2.7(2)
C4-C5-C6-C1	-0.3(3)	$C_{2} - C_{1} - N_{2} - C_{9}$	11.7(4)
C4—C5—C6—C7	-178.9(2)	C6-C1-N2-C9	-170.53 (19)
C1—C6—C7—O1	178.7 (2)	C7-N1-N2-C1	2.1 (2)
C5—C6—C7—O1	-2.6 (4)	C8—N1—N2—C1	-174.03 (17)
C1—C6—C7—N1	-1.1 (2)	C7—N1—N2—C9	171.13 (17)
C5—C6—C7—N1	177.6 (2)	C8—N1—N2—C9	-5.0 (3)
	× /		(-)

N4-C12-C13-C14	-153.83 (18)	N4—C9—N2—C1	109.2 (2)
N3-C12-C13-C14	-26.9 (2)	N4—C9—N2—N1	-57.1 (2)
C19—C12—C13—C14	89.8 (2)	O2-C10-N3-C8	15.8 (3)
N4-C12-C13-C18	28.2 (3)	N5-C10-N3-C8	-166.13 (17)
N3-C12-C13-C18	155.12 (19)	O2-C10-N3-C12	168.5 (2)
C19—C12—C13—C18	-88.2 (2)	N5-C10-N3-C12	-13.4 (2)
C18—C13—C14—C15	-0.5 (3)	N1-C8-N3-C10	75.2 (2)
C12-C13-C14-C15	-178.5 (2)	N1-C8-N3-C12	-74.9 (2)
C13-C14-C15-C16	0.0 (4)	N4-C12-N3-C10	-97.09 (18)
C14—C15—C16—C17	0.7 (5)	C13-C12-N3-C10	136.40 (17)
C15-C16-C17-C18	-1.0 (5)	C19—C12—N3—C10	11.15 (19)
C14—C13—C18—C17	0.2 (4)	N4—C12—N3—C8	55.2 (2)
C12-C13-C18-C17	178.3 (2)	C13—C12—N3—C8	-71.3 (2)
C16-C17-C18-C13	0.5 (4)	C19—C12—N3—C8	163.46 (16)
N4-C12-C19-N5	111.33 (15)	O3-C11-N4-C9	-9.1 (3)
N3-C12-C19-N5	-4.98 (18)	N6-C11-N4-C9	173.40 (16)
C13-C12-C19-N5	-126.92 (17)	O3—C11—N4—C12	-173.50 (18)
N4-C12-C19-N6	-5.30 (17)	N6-C11-N4-C12	9.0 (2)
N3-C12-C19-N6	-121.60 (15)	N2-C9-N4-C11	-85.1 (2)
C13—C12—C19—N6	116.45 (17)	N2-C9-N4-C12	78.2 (2)
N4-C12-C19-C20	-126.54 (16)	N3-C12-N4-C11	106.46 (17)
N3-C12-C19-C20	117.15 (17)	C13—C12—N4—C11	-127.01 (16)
C13—C12—C19—C20	-4.8 (2)	C19—C12—N4—C11	-1.91 (19)
N5-C19-C20-C21	20.5 (3)	N3-C12-N4-C9	-58.2 (2)
N6-C19-C20-C21	148.6 (2)	C13—C12—N4—C9	68.3 (2)
C12-C19-C20-C21	-95.4 (2)	C19—C12—N4—C9	-166.61 (15)
N5-C19-C20-C25	-162.89 (19)	O2-C10-N5-C19	-172.2 (2)
N6-C19-C20-C25	-34.7 (3)	N3-C10-N5-C19	9.9 (2)
C12—C19—C20—C25	81.2 (2)	N6-C19-N5-C10	105.7 (2)
C25—C20—C21—C22	-1.2 (4)	C20-C19-N5-C10	-126.81 (19)
C19—C20—C21—C22	175.4 (2)	C12-C19-N5-C10	-2.7 (2)
C20-C21-C22-C23	1.0 (5)	O3-C11-N6-C19	169.48 (19)
C21—C22—C23—C24	-0.4 (5)	N4-C11-N6-C19	-13.1 (2)
C22—C23—C24—C25	0.0 (5)	N5-C19-N6-C11	-96.61 (19)
C21—C20—C25—C24	0.8 (4)	C20-C19-N6-C11	135.33 (17)
C19—C20—C25—C24	-175.9 (2)	C12-C19-N6-C11	11.4 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N5—H5A···O1 ⁱ	0.857 (10)	2.42 (2)	3.004 (2)	126 (2)
N5—H5A···O2 ⁱ	0.857 (10)	2.11 (2)	2.782 (2)	135 (2)
N6—H6···O2 ⁱ	0.868 (10)	2.44 (2)	3.062 (2)	130 (2)
N6—H6…O1 ⁱⁱ	0.868 (10)	2.298 (17)	3.041 (2)	144 (2)
C8—H8A…O1	0.97	2.57	2.938 (3)	103
C14—H14…N3	0.93	2.51	2.832 (3)	101
C18—H18…N4	0.93	2.51	2.827 (3)	100
C21—H21…N5	0.93	2.48	2.821 (3)	102

C26—H26A····O1 ⁱ	0.98 (4)	2.43 (4)	3.364 (3)	158 (3)			
C9—H9B···O3 ⁱⁱⁱ	0.97	2.23	3.165 (2)	161			
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$; (ii) x , $y+1$, z ; (iii) $-x$, $-y+2$, $-z$.							

